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ABSTRACT

One of the major objectives associated with mining is to deliver an expected

amount of product to customers on time. Uncertainties inherent to mining can make

this goal difficult to meet. In this research we focus on uncertainty in meeting produc-

tion targets, specifically at the Loussavaara-Kiirunavarra Aktiebolag (LKAB) com-

pany's Kiruna iron ore mine. Uncertainty in ore grade quality is one of the major

contributors to the difficulty in meeting production targets. We use a value of infor-

mation framework (VOI) to consider the economic feasibility of a mine purchasing

additional information on extracted ore type to reduce the uncertainty of extracted

ore grade quality.

The Kiruna mine extracts three ore types during its mining operations. Phos-

phorus and potassium are the main contaminants of the ore. The first part of this

research identifies the existence of different types of ore misclassifications using a

database containing ore extraction records from the Kiruna mine. The second part

focuses on using these identified misclassification errors and a Kiruna cost model to

quantify the cost of the misclassification errors to the Kiruna mine. We assume the

principal cost of the errors is reflected in the under-utilization of the ore processing

mills.

Utilizing a VOI framework, we examine the feasibility of purchasing a laser-

induced fluorescence (LIF) analyzer as a source of additional information on extracted

ore quality for the Kiruna mine. We find, given certain assumptions, that it is bene-

ficial to the mine to purchase 10 LIFs (one for each production area). Depending on

the accuracy of the LIF analyzer, the net benefit of the additional information on ore

iii



grade quality to the mine ranges from $2.7M to $116M per year.

iv
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Chapter 1

INTRODUCTION

Every mine has the end goal of delivering an expected amount of product to

its customers when promised. Uncertainties inherent to mining can make this goal

difficult to meet. These uncertainties contribute to a number of operational problems

including, choosing a mining method, planning extraction, predicting the quality and

quantity of extracted ore and meeting production targets. In this research we focus

on uncertainty in meeting production targets. Uncertainty in ore grade quality is one

of the major contributors to the difficulty in meeting production targets.

Uncertainties in extracted ore grade quality are attributed to two causes: (i)

geologic composition of the orebody and (ii) dilution of the ore during extraction.

Geologic uncertainty concerns the quality of the orebody or the contents of the cave

rock that surrounds the orebody. Dilution of the ore takes place during the actual

mining process. In underground mining, as ore is recovered via a caving method (e.g.,

block caving, sublevel caving), a percentage of the available ore becomes diluted

with contaminants in the ore and in the cave rock surrounding the orebody. The

uncertainty in the amount of dilution leads to the unpredictability in the quantity

and quality of collected ore. Both types of uncertainty can lead to missing production

targets, thus affecting a mine's profitability as well as business relationships between

the mining company and its customers.

The Loussavaara-Kiirunavarra Aktiebolag (LKAB) company operates a large

underground iron ore mine north of the Arctic Circle in Kiruna, Sweden. Kiruna is the
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sole underground iron ore producer in the world today (Collins et al., 2001). The mine

extracts three ore types which are distinguished by their phosphorus (P), potassium

(K20), and iron (Fe) contents. Phosphorus and potassium are the main contaminants

of the ore. Kiruna's mining method (sublevel caving) leads to a high degree of ore

dilution during recovery. This dilution creates uncertainty in the extracted ore type

making it difficult to meet production targets. This research focuses on utilizing a

value of information (VOI) methodology to analyze the value of gathering information

on extracted ore quality. We use VOI to assist mine operators in making decisions

regarding ore classification and collection procedures.

1.1 Literature Review

Decision makers seek the best way to determine when to mine, how to mine,

which equipment to select, and how to terminate operations after a resource has been

economically exhausted. These decisions are complex ones that combine scientific

techniques and practical knowledge. The literature review reveals two approaches to

modeling decision making in mining: 1) deterministic decision making models and 2)

stochastic decision making models.

1.1.1 Deterministic Decision Making Models

Early mine modeling methods are deterministic in nature and have been used in

project selection, mining method selection and equipment selection. The most com-

mon early deterministic model uses a static NPV calculation to compare costs versus

benefits, given a number of assumptions such as orebody size and shape, amount

of reserves, quality, and market prices. The type of NPV calculations used in early

models does not account for uncertainty in revenues or costs. Studies that utilize



this type of deterministic modeling are: Boshkov & Wright (1973); Laubscher (1981);

Sevim & Sharma (1991); Markeset & Kumar (2000).

Recently, deterministic optimization models have become more popular. In-

cluded in this categorization are integer programming models ((elebi, 1998), multi-

criteria optimization models such as goal programming (Mukherjee & Bera, 1995),

analytical hierarchy process (Samanta et al., 2002), and fuzzy decision making theory

(Bitarafan & Ataei, 2004). Nicholas (1981, 1992) ranks mining methods based on a

number of key inputs. Genetic algorithms are also used to solve deterministic models

such as integer programs (Haidar & Naoum, 1996; Haidar et al., 1999).

Deterministic modeling is a scientific and mathematical method to assist decision

makers. While uncertainty in input factors can be investigated to some extent using

sensitivity analysis, it is virtually impossible to account for all uncertainty that is

inherent in model input factors. Stochastic models allow decision makers to capture

multiple sources of uncertainty at once.

1.1.2 Stochastic Decision Making Models

Simulation is the most well-known stochastic modeling method, and the most

prominently applied in the mining sector. Examples of mining simulation models

are found in Magalhaes et al. (1996); Sturgul (1996); Dimitrakopolous et al. (2002).

Other stochastic modeling tools include: queueing theory (Kappas & Yegulalp, 1991;

Zhonghou & Qining, 1988), expert systems theory (Clark et al., 1990; Erdem et al.,

1996; Zhang et al., 1998), reliability analysis (Hall et al., 2000), and value of infor-

mation (VOI).

Value of Information (VOI) Value of information is a type of stochastic

decision making methodology aimed at quantifying the value of obtaining additional
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information to assist in reducing uncertainty. Value of information has been applied

in decision making for many different purposes. A review of the literature finds that

VOI is most commonly applied to five general areas: medicine, agriculture, veterinary

science, business, and natural resources.

Researchers in the medical and veterinary fields utilize VOI to assist in decision

making processes. Claxton et al. (2005) and Meltzer (2001) use decision analysis and

a VOI methodology to support procurement of new medical advancements (medicines,

tests, practices, etc.). Other notable studies in medicine include the design of clinical

trials (Claxton & Thompson, 2001) and analyzing the use of pharmacoeconomics, i.e.,

economics applied to pharmaceutical studies (Miller, 2005). In veterinary science,

VOI has been applied extensively to studies involving a number of different animal

types. Lockhorst & Claassen (1997) investigate the value of collecting additional

information on pig characteristics to organize pig fattening operations. Krieger &

Hoehn (1999) use value of information to measure sport anglers' willingness to pay

for information on chemical residue in fish. Additional references include studies on

animal behavior (Koops, 2004) and investigating the risk of imported animal diseases

(Disney & Peters, 2003). Disney & Peters (2003) reference a number of applications

in both the veterinary and agricultural sectors. Agricultural studies include Meza &

Wilks (2004); Minasny & McBratney (2002); Mitchell (2003).

VOI has also been used widely in business. Examples include game theoretical

settings (Martin & Ho, 2002), stylized versions of real-world scenarios (Simchi-Levi

& Zhao, 2003), and practical industrial applications. Walls et al. (1999) use a value

of information methodology to evaluate different maintenance strategies for a Co-

operative Telerobotic Retrieval (CTR) System for the Idaho National Engineering

Laboratory (INEL). VOI is applied in designing control software in satellite anten-
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nae deployment (Norstrom et al., 2002) where different control software designs are

compared to reduce risk and uncertainty. Alles et al. (1998) investigate how division

managers of a decentralized company can withhold information if they fear that it is

detrimental to their interests.

The use of VOI in the mining sector is sparse. In the natural resource arena, VOI

is applied most prominently to oil and gas exploration. Chermak & Patrick (1995)

investigate a firm's decision making process in drilling natural gas wells. Their paper

models and evaluates the economic benefits of an enhanced information technology

that provides improved estimates of reservoir characteristics for an unconventional

gas resource. The information is used to assess the well's potential and to determine

how best to complete and produce the well. Bjorstad et al. (1989) create a stochastic

dynamic model for making exploration decisions. They investigate the effect that

gathering information over time has on the decision to explore, wait, or stop investing

in exploration.

Applications of VOI in the mining sector are few. Peck & Gray (1999) make no

explicit reference to VOI, yet discuss the potential benefits of gathering information

to decision makers in the mining industry. Tulcanaza & Ferguson (2001) create a

strategic development methodology designed to help decision makers choose between

mineral development projects, specifically for Codelco-Chile (a major copper pro-

ducer), though the authors stipulate the methodology could be applied to any mine.

Though the authors refer to using "value of information," their methodology is not

VOI in the traditional sense. While they place value on the information provided by

each main development phase by comparing expected budget costs with the expected

net present value, the authors fail to take into account uncertainty of information on

the mineral specifications and reserves.
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Barnes (1986) compares stochastic programming and VOI techniques in the in-

corporation of geostatistical estimation into mine planning. Typical estimates done

via kriging provide not only a parameter estimate, but also a measure of the un-

certainty associated with this parameter, the parameter variance. The author in-

vestigates geologic delineation sampling as a technology that has a cost and value

associated with it. Mine operators must meet specified contract production require-

ment~s and satisfy certain quality constraints (e.g., percent sulfur. content and percent

ash content constraints).

Whereas Barnes investigated some methods to reduce uncertainty in a generic

coal mine, this research actually applies the value of information technique to a work-

ing mine. Additionally, we develop a methodology for identifying the existence of

misclassification errors in an ore extraction database, provided by Kiruna. The results

of this research will provide mine managers with valuable insight into the decision

on whether or not to purchase scanner technology that helps reduce extracted ore

uncertainty.
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Chapter 2

THE KIRUNA MINE AND ORE MISCLASSIFICATION

2.1 The Kiruna Mine

In approximately 1696, the first documented ore samples were collected in the Ki-

irunavaara and Luossavaara mountains located in northern Sweden, above the Arctic

Circle. The vast wealth of ore discovered was not economically feasible for exploita-

tion until the 1870's. In 1890 the Loussavaara-Kiirunavaara Aktiebolag (LKAB)

company was formed. The Kiruna mine began as a surface mine. In 1957, mining

operations started to move underground because of economic infeasibility of surface

mining. Surface mining stopped completely by 1962. Currently, the main mining

level is at 1045 meters below the surface. Kiruna produces approximately 65,000 tons

of ore a day, amounting to about 24 million tons a year. The extracted ore is sent to

one of four mills where the ore is processed to produce either fines or pellets used in

steel manufacturing.'

The Kiruna orebody is a high-grade magnetite ore approximately four kilometers

long and 80 kilometers wide (Kuchta, 2002). There are two main ore types located

in situ. About 80% of the orebody contains a high iron, low phosphorus B type ore

and the remaining 20% is a high phosphorus D type ore. The main contaminants of

the orebody are phosphorus (P) and potassium (K20). Extraction of the two main

1Fines (sinter fines) are finely ground ore particulates. They are sintered to lump ore at the steel
mills for use in blast furnaces. Pellets are sintered and compressed balls of ore of uniform quality.
They are used directly in steel mill blast furnaces (LKAB, 2005).
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types of ore yields three specific ore types: B1, B2, and D3. B1 ore is characterized by

having a high iron content (- 68% on average), a low phosphorus level (- 0.06%), and

a potassium level lower than 0.15%. B2 ore is typically formed during the extraction

process. The high iron, low phosphorus B1 ore mixes with waste rock, raising the

phosphorus content of the ore, resulting in B2 ore. On average the B2 ore contains

approximately 0.2%P and more than 0.15% K20. The D3 ore has the highest levels

of phosphorus, greater than 0.9%P (Topal, 2003). Table 2.1 illustrates the average

content of all key elements and usage of the three ore types. Note that phosphorus is

the key factor that distinguishes the three ore types. Potassium content is important

only when categorizing B1 ore.

Ore Type %P %K 20 Use
BI 0.06 0.15 Fines production
B2 0.2 - Medium (P) pellets feed
D3 0.9 - High (P) pellets feed

Table 2.1. Characteristics of Three Ore Types (Topal, 2003)

2.2 Sublevel Caving and Ore Dilution

A number of different methods are used for underground mining including long-

wall, room-and-pillar, sublevel stoping, block caving and sublevel caving. The method

chosen is often due to the economics of the project (costs versus benefits) and the

specific geology of the orebody. The Kiruna mine uses large-scale sublevel caving for

its mining operations.

Sublevel caving is a mass mining method that employs the concept of gravity

flow to assist in ore recovery. Under optimal conditions, the sublevel caving method
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can recover 85 to 90% of the ore with 15 to 20% dilution (Boshkov & Wright, 1973).

As with any mining method, sublevel caving has its advantages and disadvantages.

Besides being one of the safest underground mining methods, the repetitive nature

of sublevel caving (drifting, drilling and blasting, and recovery and transportation)

and the use of trackless transport systems lends itself to a high degree of flexibility

and automation (Kvapil, 1982). The major disadvantage of sublevel caving is the

high amount of ore dilution that occurs during recovery. Figure 2.1 is a pictorial

representation of a typical sublevel caving operation.

Footwall tg

Figure 2.1. Representation of sublevel caving (www.atlascopco.com)
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The topmost levels of Figure 2.1 represent the sublevels (or drifts) from which

ore is currently extracted. Lower levels of the mine are prepared for blasting or

development. Each sublevel is connected to a collection of ore passes where the ore

is dumped and awaits transport by train to the crusher area. The process of sublevel

caving is depicted pictorially in Figure 2.2 (LKAB, 2005). Each step of this process

is described below.

1. Preparation and Development: New sections of the mine are prepared for ore

extraction. Electric powered drills form drifts which extend from the footwall

(see [1] on 2.1) to the hangingwall (see [21 on 2.1) through the orebody. Drifts

can be up to 80 meters in length.

2. Production Drilling: After developing the drifts, production drilling commences.

A fan-shaped pattern of 10 holes is drilled using a remote-controlled drill rig.

The completed holes are loaded with explosives for blasting.

3. Charging and Blasting: A remote-controlled robot enters the drift and inserts

explosives into the set of drill holes closest to the footwall. The holes are blasted

and recovery vehicles, known as load-haul-dump units (LHDs), are sent into the

drifts to recover the blasted ore. LHDs are electric, wheeled vehicles that carry

approximately 25 tons of ore.

4. Loading: Once the LHD collects the ore, it drives to the end of the drift and

dumps the ore into a collection bin, known as an ore pass. The ore waits there

for transportation to the crushers.

5. Hauling: The main haulage level in Kiruna is the 1045m level. A remote-

controlled train is sent to collect the ore from a full ore pass. A train consists
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of about 24 cars and carries approximately 500 tons of ore. The train proceeds

from the ore pass to the crushers.

6. Crushing and Hoisting: The train arrives at a crusher where the bottoms of the

.rail cars open and unload the ore. The ore is crushed for easier processing at

the mills and is hoisted to the surface using an ore elevator known as a skip.

Preparation and Development Production Drilling (side view) Charging and Blasting

Loading Hauling Crushing and Hoisting

Figure 2.2. Detailed description of sublevel caving (www.lkab.com)

Mostly ore is collected during initial recovery after blasting. Gravity causes the

waste rock to filter down to the recovery area, mixing with the ore. As the process

continues, surrounding cave rock mixes with the ore and the levels of waste rock

recovered start to rise. The waste rock causes dilution of the mined ore. Eventually, at

a predetermined acceptable level of dilution (i.e., loads collected from a drift contain
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50% ore and 50% waste), the mining of the drift is complete. The amount of ore

dilution is difficult to predict because of the difficulty in modeling the gravity flow

process.

Extracted Ore Grade Uncertainty at Kiruna

Through the assaying of core samples and 3D imaging systems, the mine opera-

tors have a fairly accurate idea of the composition of the intact orebody. With this

information, Kiruna has developed an in-house computer program which estimates

how many tons of each ore type to expect from each production area (Kuchta, 2002).

From this information, the mine then generates a production schedule designed to

meet demand, which is known with certainty. This schedule is then implemented

throughout the mine production areas.

Load-Haul-Dump (LHD) units transport the blasted ore from current mining

sites to an orepass. These orepasses are designated to collect a specific type of ore:

B1, B2 or D3. It is critical to keep these ore types separated. If a load of D3

accidentally gets mixed into an orepass that is supposed to be collecting B1 ore, all

ore in the shaft is contaminated and the entire load of BI might change into B2 or

D3 ore. This contamination delays the mine in meeting its B1 production targets

and forces mine operators to attempt to compensate for that deficit, which may not

always be possible given the areas of the mine currently undergoing extraction.

A train is sent to collect the ore once an orepass is full. The ore is then trans-

ported to the crusher area, where there are four crushers available. Each crusher

processes a certain ore type. At any point in time, three crushers are crushing ore

while the fourth is on standby in case of a crusher failure. While the ore is dumped

from the train into the crusher it is assayed to obtain information on the chemical

content of the ore, specifically %P, %Fe and %K20. This is the first time the com-
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position of the extracted ore is realized and any misclassification is discovered. Once

a misclassification is identified, the mine must modify its extraction plans in order to

compensate for the misclassification. The next section details the data set received

from Kiruna and how the uncertainty surrounding the composition of the extracted

ore affects daily production.

2.3 Kiruna Data File

Kiruna provided a data file that contains every recorded ore extraction from

September 2001 to June 2004, totaling 123,123 observations. Variables collected

include: load number, date and time of load dumping, weight of ore load, crusher

number, crusher ore classification (B1, B2, or D3), the shaft from which the ore was

collected and its associated ore classification, and the assay information from each

ore load. We use the variables included in Table 2.2 to analyze the data file provided.

A list of all variables in the data file can be found in Appendix B.

Variable Name Label (Description)
LoadNum Load Number
Time Time (24-hour Clock)
Date Date
Weight Weight of Ore Load (tons)
CrushNum Crusher Number (4 crushers, 3 active at once)
CrushOre Crusher Ore Quality (Crusher that processes BI, B2, or D3)
ShaftNum Shaft Number
ShaftOre Shaft Ore Quality (Shaft set to hold BI, B2, or D3)
PctWaste Percent Waste Rock in Ore Load (assay result)
PctK20 Percent Potassium Oxide in Ore Load (assay result)
PctFE Percent Iron in Ore Load (assay result)
PctP Percent Phosphorus in Ore Load (assay result)

Table 2.2. Names and Descriptions of Important Analysis Variables
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The mine has monthly production goals for each ore type based on long-term

customer contracts. The monthly goals are divided into daily goals based on the mine

operators' knowledge of what ore types are expected from current mining areas. The

first step in our analysis is to discover how well (or poorly) the mine is classifying the

extracted ore. Currently, the extracted ore type is realized only after it is assayed at

the crusher. The results of the assay are returned to the mine operators approximately

ten minutes after the ore is dumped. By this time, the ore has been crushed and sent

to the mills for processing. The delay in obtaining the assay results can lead to an

error in classification of the ore that was dumped and in the corresponding shaft ore

type classification. There is the possibility that the ore load dumped into the crusher

is thought to be one type (e.g., B1) when it is actually another ore type (e.g., B2).

The data file is used to capture these errors.

2.4 Misclassification Errors

A misclassification error is defined as follows: a load of ore of a certain quality

is dumped into a crusher that processes a different ore quality. Mixing ore types

can dilute more pure ore (e.g., B1) and change its chemical composition to a less

pure ore type (e.g., B2 or D3). There are three types of identifiable misclassification

errors: 1) errors due to mine operators attempting to maintain acceptable levels of the

moving averages of key elements (%P and %K 20) of each ore type, 2) errors due to

an inoperative crusher, and 3) errors due to the lag in shaft reclassification (because

of the delay in ore contaminant information from the assay). Figure 2.3 provides a

detailed view of Kiruna's current production level. Included are labels detailing the

location and the meaning of the ShaftOre and CrushOre variables (see also Table

2.2). We use these variables to identify the various misclassification errors. After a
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brief description of each error type, we explain the methodology we use to find the

errors, including pseudo-code, and follow with an example from the data file. In the

pseudo-code, the step that identifies the error is highlighted.

Hoistng

P~odutien lockTo mills for

Pr i bprocessing

Sublevels (Drifts) - tunnels
into orebody where mining is
currently taking place

7 O Hoisting

,• Shaft~re - ore type Ih orus er tpro ese

•s,'jf•.sitting in the shaft

Figure 2.3. Kiruna Current Production Level

2.4.1 Error due to Fixing Moving Averages (EA)

As each train load is processed, the mine updates the moving averages of the %P

and %K20 in each ore type. In order to maintain these averages within tolerance

limits (see Table 2.1, Section 2.1), it is sometimes necessary to redirect one ore type

to a crusher that processes another ore type. As an example, consider the following

scenario. The moving average of %K 20 in processed Bi ore exactly matches the

maximum tolerable level for B1 (1 0.15%). Based on assay information obtained
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from the last train load from a specific shaft, the mine operators know that the next

train load of B1 ore from that shaft might have a higher than average %K 20 content.

This load could drive the current running average for Bl ore beyond desired limits.

Therefore, the next load of BI ore is dumped as B2 in order to maintain the moving

average of %K 20 in B1 below its maximum tolerable level. We refer to this as an

error due to fixing moving averages, EA.

The most obvious instance of an ore misclassification in the data file is when

ShaftOre $ CrushOre. This implies that the ore type gathered from the shaft is

deposited into the crusher that processes a different ore type. Therefore, to find an

error we look for instances where the ore type delivered from the shaft (represented

by the ShaftOre variable in the data file) does not match the ore type the crusher

processes (labeled as the CrushOre variable). In order to determine if the mine

operators have intentionally sent the ore to the wrong crusher, the assay results from

the dumped ore load must be compared to the moving averages of %K 20 and/or %P

for both the ore type depicted with the ShaftOre variable and the ore type represented

by the CrushOre variable. The moving averages are not shown in Figure 2.4. We

calculate the moving averages of %K 20 and/or %P for each ore type from the assay

results contained in the data file. We create columns that track the moving averages

of %P and %K 20 for all three ore types. For purposes of this research, we consider

the maximum allowable levels of %P and %K 20 for all ore types as listed in Table

2.1.

The pseudo-code for finding EA is listed below.

1. Does CrushOre 7$ ShaftOre?

Yes =• Proceed to step 2

2. Do %P and/or %K 20 moving averages exceed limits?
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Yes * Mark as EA - Error due to fixing moving averages

An example of a representation of EA in the data set is shown in Figure 2.4.

Consider the observation in row five in Figure 2.4. The CrushOre variable equals B2

and the ShaftOre variable equals Bi; condition 1 is met. When checking the moving

averages for an EA error, we examine the moving average of the contaminants for

both ore types; an ore load could be purposefully erroneously dumped in order to

manipulate the moving averages in either the B2 ore or the B1 ore. A load of B1

ore could be dumped in the B2 crusher for one of two reasons. First, if the moving

average(s) of %P and/or %K20 are too high in the B1 ore at the mill (>0.06 %P

or >0.15 %K20), that load of B1 could be redirected to the B2 crusher. If the

contaminant level in the B1 ore arriving at the crushers is close to the maximum

allowable level, this ore load may be redirected so B1 ore with lower contaminant

levels can be sent to the B1 mill. Second, the moving average of %P is too high in

the B2 ore (>0.2 %P). The lower phosphorus B1 ore is deposited into the B2 crusher

in order to lower the moving average of the B2 ore to acceptable levels. If either of

these conditions occurs, the observation is flagged as EA. Row five in this example

is listed as the load erroneously dumped. There are other possible reasons why the

CrushOre and ShaftOre variables do not match.

Load Nu.n Timie Date Weight CrtishOre ShafiNi ShaftOre LostweightLostOre
1 4:32:20 12/5/2002 657 B1 121 B1 - -

2 6:15:49 12/5/2002 665 81 121 81
3 8:39:19 12/5/2002 683 81 121 B1 -

4 9:57:28 12/5/2002 685 B1 121 81 - -

6 10:37:31 12/5/2,002 641 B2 121 1 641 .61
6 18:27:36 12/5/2002 727 B1 121 81 -

Figure 2.4. Error Due to Fixing Moving Averages, EA
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2.4.2 Error Due to Inoperative Crusher (Ec)

If the mismatch in CrushOre and ShaftOre is not due to fixing the moving aver-

ages, it must be attributed to another cause. The second identifiable misclassification

error is caused by a crusher being non-operational, denoted as Ec. At any time a

crusher can fail and/or have to be removed for maintenance. In this case, the ore that

would normally be dumped in that crusher must be redirected to another crusher.

Consider the following example: the B1 crusher fails. Any trains carrying B1 ore are

now directed to either the B2 or D3 crusher. Those loads of BI ore are lost as other

ore types. The standby crusher can be activated within a few minutes, so the error

is assumed to affect only one train load.

As with finding EA, the first step in identifying EC is to check and see if the

ore brought from the shaft is being sent to the appropriate crusher. Suppose a shaft

currently contains B2 ore. A load is collected from the shaft and deposited into the

crusher that processes B1 ore. The moving averages of %K 20 and/or %P are checked

in both the B1 and B2 ore, as described in the previous section. After eliminating the

possibility of error due to fixing the moving averages, we check the trend in the shaft

ore classification. The last load delivered from the shaft and the next load collected

from the shaft are both B2, suggesting the ore type in the shaft has not changed.

Since the ore type in the shaft is constant and the only anomaly is that the ore load

dumped into the BI crusher, this would suggest the B2 crusher was inoperative at

the time the load was delivered and the ore was redirected to the B1 crusher.

We create new variables to assist with analysis of the data set include Last

ShaftOre, which represents the previous ore type delivered from the shaft, and Next

ShaftOre, which is the ore type received from the shaft in the train load following the

current load. The pseudo-code for finding EC is listed below.
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1. Does CrushOre 7 ShaftOre?

Yes •. Proceed to step 2

2. Do %P and/or %K 20 moving averages exceed limits?

(a) Yes • Mark as EA - Error due to fixing moving averages

(b) No = Proceed to step 3

3. Does ShaftOre = Last ShaftOre?

(a) Yes • Proceed to step 4

(b). No = Process next observation

4. Does ShaftOre = Next ShaftOre?

Yes => Inoperative Crusher - Ec

In step 2 above, the possibility of an EA error is eliminated and determining if

the mismatch is due to EC involves examining the trend of the ore classification in

the shaft. If Last ShaftOre = ShaftOre = Next ShaftOre, it is an indication the ore

type in the shaft has not changed. This is easily seen in Figure 2.5.

.Load NiHti Time Date Weight rU shOre SiaftNi haftOre Last ShaftOre Next ShaiftOre
1 4:32:20 12/5/2002 657 B1 121 B1 B1
2 6:15:49 12/5/2002 665 B1 121 B1 E1 81
3 8:39:1912/5/2002 683 B1 121 B1 B1 B1
4 9:57:28 12/5/2002 685 B1 121 81 B1 B1
5 110,3731112/5/2002 6 141 E2 BI 121 - li 81
6 1 18:27:3612/5/2002, 727 81 1 121 81 8i1

Figure 2.5. Error Due to Inoperative Crusher, Ec

The load of B1 ore is deposited in the B2 crusher only in row five. This would

indicate that the B1 crusher was not functioning when that load was delivered to the
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crusher area; thus, the load had to be dumped into the B2 crusher, and Ec is said to

occur.

2.4.3 Error Due to a Lag in Shaft Reclassification (EL)

The last identifiable cause for a misclassification error is due to a lag in shaft

reclassification, denoted EL. This error is related to the uncertainty in the ore type

recovered due to the dilution of the ore caused by the gravity flow recovery method.

The information on the contents of the shaft is not realized until the ore has been

dumped, crushed and sent to the mill for processing.

There are two occurrences in the data set which could suggest an instance of EL.

The first depends on the inequality of the CrushOre and ShaftOre variables (CrushOre

7$ ShaftOre), designated as the lower bound on EL. The second occurrence of EL is

based on the equality of these variables, and is referred to as the upper bound on ELý

EL - Lower Bound Identifying EL follows the same logic as detailed in Sec-

tions 2.4.1 and 2.4.2; the first indication that an error has occurred is when CrushOre

: ShaftOre. If this mismatch is not attributed to fixing the moving averages, again,

we must check the trend in the ore type from the shaft. If the ore type in the current

load (where CrushOre $ ShaftOre) is the same ore type as the last load delivered

from the shaft and the next load brought from the shaft is different, this could in-

dicate a lag in the information from the assay on the actual ore type in the shaft.

Suppose a load of ore is deposited into a crusher. When the assay is returned to

the mine operators, it reveals the actual ore type is different than expected; an ore

misclassification has occurred. The mine operators must manually input the change

in the shaft ore type. At very busy times, changing the shaft ore classification can be

delayed one ore load. The result is, although the next load from that shaft (after the
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misclassified ore load) is directed to the correct crusher, the data set does not reflect

this because the shaft ore classification has not yet been changed.

First, we must check and make sure the mismatch between the CrushOre and

the ShaftOre variables is not attributed to EA. Second, we verify that the ShaftOre

variable is equal to Last ShaftOre. After this condition is met, we need to check that

ShaftOre does not equal Next ShaftOre. A change in shaft classification (indicated

by ShaftOre = Next ShaftOre) implies the type of ore in the shaft has changed.

The pseudo-code below explains how to find EL in the data file.

1. Does CrushOre =ý ShaftOre?

Yes => Proceed to step 2

2. Do %P and/or %K 20 moving averages exceed limits?

(a) Yes = Mark as EA - Error due to fixing moving averages

(b) No • Proceed to step 3

3. Does ShaftOre = Last ShaftOre?

(a) Yes =• Proceed to step 4

(b) No r Process next observation

4. Does ShaftOre = Next ShaftOre?

(a) Yes • Inoperative Crusher - Ec

(b) No • Lag in Shaft Reclassification, EL - lower bound

Once moving averages has been eliminated as the cause of the mismatch between

CrushOre and ShaftOre, it is imperative to check the classification trend of the shaft
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ore type. Figure 2.6 is an example of EL - lower bound. In Figure 2.6, row four

contains an instance in which CrushOre $ Shaft0re. The ShaftOre value from hasn't

changed from the last observation (row three). However, the next observation of the

ShaftOre variable (row five) is B2; the ore type in the shaft has changed. Suppose

the assay information for load number three is returned to the mine operators and

indicates the ore type from that shaft is now B2. The next load from that shaft

(row four) is dumped into the B2 crusher; however, the shaft ore type value has

not yet been changed in the computer system to reflect that the shaft ore type has

changed to B2; the ShaftOre value is still B1. To confirm that there is a lag in shaft

reclassification, the next value of ShaftOre (load number five) must be checked to

verify that the classification has changed and that shaft is yielding B2 ore. If this is

the case, the error is marked as EL - Lower Bound. In Figure 2.6 load number three

is the erroneously dumped ore load.

Load NumWiqhi~~!t CriishOre ShaftNumn Shatt~e Last ShaftOre Next Shaft~re LasWiqht Lost eiInli Lost Ore
1 657 B1 121 B1 BI 0 .
2 641 B1 121 81 B1 B1 657 0
3 727 B1 121 B1 B1 B1 641 0 _

4 :266 B2 121 at ,1 s2 727 727 82
5 502 B2 121 B2 81 1B 266 0 _

6 508 B2 121 B2 B2 - 502 0

Figure 2.6. Error Due to Lag in Shaft Reclassification, EL, Lower Bound

This instance of the lag in shaft reclassification errors is labeled as a lower bound

because we know there are other instances of EL that are not captured with the case

of CrushOre $ ShaftOre, but rather by using the criterion that CrushOre = ShaftOre.

This method of identifying EL is the upper bound on the error.

EL - Upper Bound This error is based on a different initial assumption than

all other errors; finding EL - upper bound depends on the condition CrushOre
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ShaftOre. A majority of the data set contains observations where the ore collected

from the shaft is deposited in the correct crusher (e.g., Bi ore from a shaft is dumped

into the B1 crusher). Sometimes, even though it appears the ore is dumped into

the correct crusher, the lag in shaft ore type reclassification can still result in an

erroneously dumped ore load. Suppose mine operators are collecting B1 ore from a

shaft. A load is dumped into the B1 crusher and later the assay results of that ore

load are returned to mine operators revealing the ore type dumped was actually B2.

This means, the last load dumped into the BI crusher was actually B2 ore; therefore

a classification error has occurred. The mine operators change the shaft classification

in the system and the next load of ore collected from the shaft is labeled B2 ore and

directed to the B2 crusher. We consider this an upper bound on the error because

we are potentially identifying more errors than have actually occurred. It is possible

that the mining area around that shaft has changed and the ore type has abruptly

changed. Though this does happen, it is rare and difficult to identify in the data set.

The pseudo-code for finding the upper bound on EL is detailed below.

1. Does CrushOre = ShaftOre?

Yes •ý Proceed to step 2

2. Does ShaftOre = Last ShaftOre?

(a) Yes • Proceed to next observation

(b) No • Mark previous observation as EL - Upper Bound

Figure 2.7 portrays an instance of EL - upper bound. In Figure 2.7 the first

condition in the pseudo-code is met for every ore load. In row four the second con-

dition is not met (ShaftOre # Last ShaftOre). Because the ore type in the shaft has

changed, the ore load delivered in row three is labeled as the incorrectly dumped ore
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load. In this example, B2 has erroneously been dumped into the B1 crusher. That

ore load of B2 is lost because it has already been crushed and sent to the processing

mill by the time the assay results are returned to the mine operators.

..;, ,-i ..,i ........ r i •i e ilii ..... 6 ........
044hLoad NiilTie Date Weilj~t CrushOre Shaftftmi Shaft~re Last ShaftOre Lost WeiqIht Lost Ore

1 4:32:20 1215/2002 657 B1 121 61 - 0
2 10:37:31 12/5/2002 641 Bi 121 BI B1 0
3 18:27:36 12/5/2002 727 B1 121 BI B1 0

S4 20:10:o9 12/5/2002 266, B2 P, , 2 Q1 .727 82
5 21:19:34 12/5/2002 502 B2 121 B2 B2 0 -

6 23:45:55 12/5/2002 508 B2 121 B2 B2 0

Figure 2.7. Error Due to Lag in Shaft Reclassification, EL, Upper Bound

Figure 2.8 is a flowchart depicting the logic used to collect the different error

types discussed. All programming was done using the SAS programming language,

version 9.1, on a IBM AIX 5L UNIX server.

2.4.4 Compilation of Errors

Once these errors are identified, we can compare the amount of each ore type

the mine produced (actual ore production) to the amount the mine could have pro-

duced if not for the misclassification errors (estimated ore production). Actual ore

production is the total amount of ore dumped into a crusher. Even though the mine

realizes that some ore loads are dumped erroneously as different ore types, if an ore

load is deposited into a certain crusher, say the B1 crusher, it is processed as B1 ore,

regardless of its actual ore type. The actual amount of B1 ore produced is a summa-

tion of the weight (in kilotons) of all loads dumped into the B1 crusher. Estimated

ore production is illustrated in the following example. Estimated BI ore includes all

B1 ore correctly dumped into the B1 crusher plus all BI ore that was erroneously

dumped into the B2 or D3 crusher, as identified by the misclassification errors. The
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Figure 2.8. Flowchart for Logic Behind Identifying Misclassification Errors

calculations for actual and estimated ore produced are depicted in the equation below.

Please note that all calculations for the reconstructed estimate of ore production are

based on ex post data. Additionally, the equations are specific to 131; however, they

can easily be changed for B2 and D3. A graphical representation of actual versus

estimated production for 131 ore can be seen in Figure 2.9.

Actual B1 = All Ore Dumped into 131 Crusher

Estimated B1 =All 131 Correctly Dumped as 131 + All B1 Erroneously Dumped

as B2 or D3
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BI Ore: Actual vs. Estimated Production
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Figure 2.9. Representation of Actual Ore Production vs. Estimated Ore Production
for B1 Type Ore

2.4.5 Measurement of Misclassification Errors

Once the misclassification errors are identified and quantified, we can assess the

impact that these errors have on Kiruna's mining goals. We hope that additional

information results in fewer misclassification errors, thus closing the gap between

actual versus estimated production. Two different methods are used to measure the

effect of the misclassification errors. We first examine how well the mine is meeting

its production targets for each ore type. We find that for most months, the mine

is underproducing B1 and B2 ore types. A percentage of this underproduction is

caused by the misclassification errors. Second, we consider what the mine could have
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produced (in kilotons per month) had there been no misclassification errors. Figure

2.10 compares the actual and estimated production of B1 to monthly production

targets for July and August 2002.

B1 Ore: Targets vs Production

400-

350 Jul-02 Target: g.02 Target:
31231

" 250-

200

1100
150

Jul-02 Aug-02

Date

Figure 2.10. Comparison of Targets vs. Production - B1 Ore Type

In August 2002, the BI production target was 318 ktons (kilotons) while the

actual and estimated production were approximately 273 ktons and 302 ktons, re-

spectively. The actual amount of BI produced missed the target by 45 ktons (318-

273). The mine would have missed its target by only 16 ktons (318-302), if not for

the ore misclassification errors. Therefore, the errors account for approximately 64%

((45-16)/45 * 100) of the production shortfall.

In July 2002, the actual production level is below the target and the estimated
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level is above the target. This means, in absence of the misclassification errors, the

mine should have processed more B1. In cases such as these, we say the errors account

for 100% of the shortfall. The table below summarizes how the misclassification

errors contributed to missing production targets for BI and B2 ore types. Since all

extracted ore is processed as one of three types, if B1 and B2 are underproduced, D3

is overproduced (see Appendix A).

Ore Type Average % Shortfall Due to Misclassification
B1 56%
B2 12%

Table 2.3. Misclassification Errors and Production Shortfall

We can also measure the effect of the misclassification errors by calculating how

much more or less the mine could have produced if not for the errors. Table 2.4 below

illustrates these calculations. On average, 34.3 ktons and 26.1 ktons of additional BI

and B2 ore, respectively, could have been processed each month if all misclassification

errors were eliminated.

Ore Type Additional Monthly Production (ktons)
B1 34.3
B2 26.1

Table 2.4. Monthly Production Lost because of Misclassification Errors
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Once we identify the misclassification errors, we want to quantify the significance

of these misclassification errors to Kiruna. We are able to see that when Kiruna

missed its production targets, it could approach, if not meet, the actual production

targets if not for ore misclassification. With a solid understanding of the significance

of the misclassification errors, these errors will now be used to quantify the cost of

misclassification to the mine.
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Chapter 3

UNDER-UTILIZATION OF ORE PROCESSING MILLS AND THE

COST OF ORE MISCLASSIFICATION

There are costs associated with the Kiruna mine not meeting production tar-

gets because of ore misclassification. These costs include, but are not limited to,

loss of goodwill with customers for not delivering p~roducts on time or of sufficient

quality, ships sitting idle in the harbors waiting for the correct product, and the

under-utilization of the ore processing mills due to misclassification. Due to the un-

availability of representative data, quantifying the costs of loss of customer goodwill

and the idleness of ships are not considered. This chapter focuses on the cost of the

under-utilization of the mills.

3.1 Mill Under-utilization

Kiruna has four ore processing mills. Three are located at the Kiruna mine and

one is located in nearby Svappavaara. One mill at Kiruna processes B1 ore; the other

two process the high-phosphorus D3 ore. The mill at Svappavaara processes the B2

ore. Table 3.1 contains the mill naming convention used at Kiruna, the type of ore

each mill processes and the corresponding capacity for each mill (provided by LKAB).

For simplicity, in the remainder of this document, we refer to the mills using the ore

type they process. For example, we refer to the SK mill as the BI mill.

We use the actual ore production versus the estimated ore production derived

from the calculations presented in Section 2.4.4 and the capacity numbers in Table
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Mill Name Ore Type Processed Max Production Rate (ktons/day)
SK B1 15.72

Svappis B2 12.0
KK2 D3 12.72
KK3 D3 16.2

Table 3.1. Capacities of the Kiruna Mills (Griffiths, 2005)

3.1 to calculate the actual and estimated utilization for the Kiruna mills (reference

Table 3.2). Since the extraction data file does not distinguish to which D3 mill the

ore from the D3 crusher is sent, we report only a single utilization value for both

D3 mills combined. Because of this lack of distinction, we hereafter use aggregated

values (e.g., utilization, costs, ore loads) for the D3 mills..

The actual mill utilization is the ratio of 1) the average amount of ore actually

produced in a month (averaged monthly from 2001-2004 using the Kiruna ore ex-

traction data file) to 2) the monthly capacity of the mill. We convert this ratio to a

percentage utilization by multiplying by 100. For example, the actual B1 production

monthly average is 278 ktons. The average monthly capacity for the B1 mill is 478

ktons. The utilization of the B1 mill is calculated using the equation below. The

actual utilization of the B2 and D3 mills is calculated in a similar manner.

B1 Mill Actual Utilization _ B1 avg. actual monthly prod. * 100 (3.1)

B1 avg. monthly capacity
278 ktons

_ ______• 100 = 58%
478 ktons

Misclassification errors lead to an under-utilization of the mills because less ore

is sent to the mill than expected for the BI and B2 mills. The D3 mill operates at

greater than planned utilization because more ore is sent to that mill than expected.



32

The estimated mill utilization is the ratio of 1) the average amount of estimated ore

produced per month (if not for misclassification) to 2) the average monthly capacity

of the mill. The equation below details this calculation for the BI mill. The estimated

utilization for the B2 and D3 mills is calculated using a similar formula.

B1 Estimated Mill Utilization _ B1 avg. estimated monthly prod.
BI avg. capacity • 100 (3.2)

315 ktons_ ____• *100
-478 ktons

= 66%

The difference between the actual mill utilization and the estimated mill utiliza-

tion is the percentage of mill under- (or over-) utilization due to ore misclassification.

Considering the B1 mill, if there were no misclassification errors, the mill would

*operate at 66% of capacity (reference Equation 3.2). However, because of the mis-

classification errors, the BI mill operates at an actual utilization of 58% (reference

Equation 3.1). Therefore, misclassification causes the mill to operate at 8% below its

estimated utilization, rather than at the highest observed percentage, which, in the

case of the B1 mill, is 66%. The under-utilization due to misclassification is a lower

bound on the under-utilization of the mills because of the possibility that the mills

are capable of operating at 100% of capacity.

Utilization B1 Mill B2 Mill D3 Mills
Actual 58% 95% 99%
Estimated 66% 103% 92%

Difference Due to Misclassification 8% 8% -7%

Table 3.2. Utilization Comparison of the Mills (Griffiths, 2005)
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There are three points to make about Table 3.2. First, the estimated utilization

of the B2 mill is 103%. This suggests that if misclassification errors were corrected,

there would be enough B2 ore to require that the B2 mill process at 103% capacity.

Second, the actual and estimated utilizations for the two D3 mills are aggregated into

a single utilization number. Third, while the BI and B2 mill utilizations increase in

the absence of misclassification errors, the utilization of the D3 mills decrease because

less ore is directed to the D3 mills when the misclassification errors are corrected.

Given the percentage of mill under-utilization, we determine the cost of this

under-utilization due to ore misclassification.

3.2 Cost of Mill Under-Utilization

The World Mine Cost Data Exchange (WMCDE) is an internet-based resource

that provides comprehensive cost models for the world's major metal markets. These

cost models are "based on verifiable engineering and production data and peer re-

view by mining industry analysts from around the world" (World Mine Cost Data

Exchange, 2005). As opposed to being simply a cost database, the WMCDE uses

industry information to construct comprehensive cost models. Formulas embedded

in the cost model allow users to change numerous factors (mining and milling rates,

labor productivity, treatment costs, input costs, exchange rates, etc.) and determine

how these changes affect mine operations (output, costs, profits, etc.) We obtained

a Kiruna cost model from the WMCDE which contains information on profits, ore

prices and a detailed breakdown of Kiruna operating costs at the mine and the mill.

One difficulty with using the cost model is that the model aggregates the cost data

for the three mills on site at the Kiruna mine (the B1 and the two D3 mills). There is

no clear distinction as to which costs are specific to the BI mill and which are specific
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to the D3 mills. Therefore, the costs for the under-utilization of the B1 and D3 mills

are estimates based on our understanding of the relative capacities of the three mills

and consultation with Kiruna mine personnel. We use the WMCDE cost model to

assist in determining the cost of mill under-utilization.

We suggest that the cost of mill under-utilization consists of three components:

1) profits forgone, 2) the fixed cost of mill under-utilization and 3) thevariable cost

of mill under-utilization. The total cost of mill under-utilization is given in Equation

3.3 below.

Total Costij Profits Forgoneij + Fixed Costij + Variable Costij (3.3)

V i E { BI, B2, D3}, j c {B1M, B2M, D3M}

where

i: ore type E{B1, B2, D3}

j : mill type E {B1M, B2M, D3M}

Profits Forgoneij : profits forgone of ore type i sent to mill j ($ per train)

Fixed Costij : fixed cost for ore type i sent to mill j ($ per train)

Variable Costij : variable cost of ore type i sent to mill j ($ per train)

We calculate the cost of mill under-utilization for each mill and ore combination.

When the ore type and the mill type match (i.e., Bi ore is sent to the BI mill) we

say there is no cost because the ore has not been misclassified. The sections below

detail each component of the total cost of mill under-utilization and we calculate this
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total cost for each of the nine mill and ore combinations.

3.2.1 Profits Forgone

The first component in the equation for the cost of mill under-utilization is the

profits forgone, which are the profits lost because of ore misclassification. We calculate

the profits forgone as the product of 1) the margin (the price of the ore minus the cost

of the ore production) and 2) the average amount of ore in a train load that arrives

at the crusher. We calculate the average amount of ore in a train load arriving at

the crusher (approximately 455 tons) from the Kiruna extraction data base. The

calculation for profits forgone is given in Equation 3.4 below.

Profits Forgoneij = mij * a (3.4)

f p, - (cI + cf), ord(i) ord(j)
0, 

ord(i) 
- ord(j)

V i E {B1, B2, D3}, j E {B1M, B2M, D3M}

where

a: number of tons in an average train load (tons per train)

ci : mine cost for ore type i ($ per ton)

2C mill cost for ore type i per ton)
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pi price for ore type i ($ per ton)

mij margin for ore type i sent to mill j ($ per ton)

We use the ord() function to determine how to calculate the margin. The ord(

function returns the position number for an element in a set. For example, considering

the set of ore types (indexed by i), ord(B1) = 1, ord(B2) = 2, and ord(D3) = 3. In

the first instance of calculating the margin, the condition states this calculation is

computed if ord(i) $ ord(j). This means that the position of the element in the set of

ore types is not equal to the position of the element in the set of mill types (indexed

by j). For example, the margin would be calculated under this circumstance if i = BI

[ord(B1)=l] and j = B2M [ord(B2M)=2]. The second case for calculating the margin

is under the instance where ord(i)=ord(j). This equality indicates the correct ore is

sent to the correct mill, i.e., there is no misclassification, and there is no cost for this

action.

In calculating the profits forgone, we disregard any profits that might be made by

selling the misclassified ore as a different ore type. Because the Kiruna mine attempts

to produce just enough ore to meet demand, we assume that there is no spot market

for any ore produced over the mine's target. For example, if a load of B2 is deposited

into the BI crusher, the mine loses the profits it could have made from processing

the ore as B2, but we don't consider the profits made by processing the B2 ore as

BE. Table 3.3 contains the costs, prices and margins for the three ore types, averaged

from 2001 - 2004.

Using Equation 3.4, we calculate the profits forgone for each of the nine mill and

ore type combinations. We detail these calculations in Table 3.4.
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$/ton Mine Cost Mill Cost Price Margin
Fines (Bi) $7.90 $9.52 $21.64 $4.22

Svappavaara Pellets (B2) $9.12 $11.00 $36.64 $16.52
Kiruna Pellets (D3) $10.16 $12.24 $14.24

Table 3.3. Cost and Price Comparison for the Three Ore Types. We calculate
the mining costs, milling costs and prices from the cost model. The last column, the
margin, is the difference between the price and the mine and mill costs. That is,
margin = price - (mine cost + mill cost).

Mill Ore Type Average Margin Profits
Train Load ($/ton) Forgone
(tons/train) ($/train)

(1) (2) (3) (4) (5)
BI Mill B1 Ore 455 $0 $0
BI Mill B2 Ore 455 $16.52 $7,517
B1 Mill D3 Ore 455 $14.24 $6,479

B2 Mill B4 Ore 455 $4.22 $1,920
B2 Mill B2 Ore 455 $0 $0
B2 Mill D3 Ore 455 $14.24 $6,479

D3 Mill B1 Ore 455 $4.22 $1,920
D3 Mill B2 Ore 455 $16.52 $7,517
D3 Mill D3 Ore 455 $0 $0

Table 3.4. Calculation of Profits Forgone ($/train). Column one (1) is the mill
type. Column two (2) is the ore type that is sent to that mill. Column three (3) is
the average amount of ore in a train load arriving at the crusher area. Column four
(4) is the margin for the ore in column two (reference Table 3.3). The fifth column
(5) is the calculation of the profits forgone (average train load (3) * margin (4).)
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The fixed cost of mill under-utilization is the second component, in determining

the total cost of mill under-utilization.

3.2.2 Fixed Cost of Mill Under-utilization

The fixed cost of mill under-utilization consists of mill services (air, water, etc.)

and mill administration, which we calculate from the Kiruna cost model. Even though

the mill is producing at less than capacity, the mine must still pay the fixed cost

associated with mill operations. The closer a mill operates to capacity, the greater

the proportion of the fixed cost covered by revenue made from selling the end product.

Because the cost data are aggregated for the BI and D3 mills at Kiruna, we have

to allocate the fixed costs between the B1 mill and the D3 mills. We proportion the

fixed costs based on the capacities (reference Table 3.1) of the mills. We calculate

the total capacity for all mills at the Kiruna mine (not including the B2 mill at

Svappavaara), and each mill capacity is a portion of this total capacity. An example

of this calculation is presented in the equation below.

B1 Proportion of Fixed Cost CapacityofSK
Cap. of SK + Cap. of KK2 + Cap. of KK3

15.72
15.72 + 12.72 + 16.2

- 0.35 = 35%

The B1 mill accounts for 35% of total processing capacity, while the D3 mills account

for 65% of capacity. These percentages are then multiplied by the total fixed cost at

the Kiruna mine to get the fixed cost at each mill, as shown for B1 in the equation

below. The D3 mills' fixed cost is calculated in a similar manner by substituting 0.65

for 0.35. The fixed costs (reported in dollars per day in the cost model) for each mill
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are displayed in Table 3.5.

BI Mill Fixed Cost = B1 Proportion of Fixed Cost * Total Kiruna Fixed Cost

= 0.35 * $28,918 = $10,183 per day

Mill Fixed Cost ($/day)
B1 $10,183
B2 $10,477
D3 $18,734

Table 3.5. Fixed Cost at the Ore Processing Mills ($/day). The fixed cost for
the B2 mill is extracted from the Kiruna cost model. The fixed costs for the B1. and
D3 mills are estimated from the aggregated fixed cost in the cost model using their
relative capacities. We report one representative fixed cost number for both D3 mills.

The fixed cost of ore misclassification for a mill is the difference between the fixed

cost of the expected utilization of the mill and the fixed cost of the actual utilization

of the mill, which we have termed the under-utilization due to misclassification (Table

3.2). Therefore, the calculation of the fixed cost of misclassification is the fixed cost of

the mill to which the misclassified ore should have been sent multiplied by the percent

under-utilization of that same mill due to misclassification, which is illustrated in the
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equation below.

max {ej, - ay,, 0} * fj,, ord(i) $ ord(j) and ord(j')=ord(i)

Fixed Costij = (3.5)

0, ord(i)=ord(j)

V i G {B1, B2, D3}, j,j' C {B1M, B2M, D3M}

where

aj, actual utilization of mill j'

ej, estimated utilization of mill j'

f, :fixed cost of mill j' ($/day) (reference Table 3.5)

The maximize function results in a positive fixed cost if the estimated utilization

of the mill is greater than the actual utilization and zero cost if the estimated utiliza-

tion is less than the actual utilization. Since the utilization of the D3 mill decreases

in the absence of misclassification errors, there is no fixed cost of under-utilization of

the D3 mill in the event of misclassification. In the first instance of calculating fixed

costs two conditions must be met: 1)ord(i) # ord(j), and 2) ord(j') = ord(i). These

conditions ensure that the fixed cost is calculated for the correct mill. For example,

we calculate the fixed cost for B1 ore (i = B1) sent to the B2 mill (j = B2) as the

fixed cost for the B1 mill because that is the mill that is under-utilized as a result of

the misclassification. Table 3.6 details the fixed cost of mill under-utilization for the

nine mill and ore combinations.
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Mill Ore Type Mill Affected by Fixed Cost
Misclassification ($/day)

(1) (2) (3) (4)
B1 Mill B1 Ore N/A $0
B1 Mill B2 Ore B2 Mill $838
B1 Mill D3 Ore D3 Mill $0

B2 Mill B1 Ore BI Mill $815
B2 Mill B2 Ore N/A $0
B2 Mill D3 Ore D3 Mill $0

D3 Mill B1 Ore BI Mill $815
D3 Mill B2 Ore B2 Mill $838
D3 Mill D3 Ore N/A $0

Table 3.6. Calculation of Fixed Cost of Mill Under-utilization ($/day). The
first column (1) is the mill to which the ore is sent. The second column (2) is the
ore type that is sent to the mill. Column three (3) is the mill affected by the under-
utilization due to misclassification, and the fourth column (4) is the fixed cost for the
mill underutilization, as calculated with Equation 3.5.

The final factor in the cost of mill under-utilization due to ore misclassification

is the variable cost.

3.2.3 Variable Cost of Mill Under-utilization

The variable milling costs are the supply and equipment operating costs associ-

ated with the following processes: reagent use, magnetic separation, wet high intensity

magnetic separation, concentrate thickening and floatation, and pelletizing. These

.processes are used for producing pellets at the B2 and D3 mills only. Though there

are other variable costs at these mills, the processes listed account for the majority

of these costs.

There are also common variable costs associated with processing ore at all mills

(e.g., crushing and grinding); these costs are approximately the same per ton of ore.
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We consider these common variable costs sunk costs, and therefore we ignore them

and our analysis considers only the variable costs that differ between mills.

The supply cost of the aforementioned processes consists of electricity costs (99%)

and some media (grinding balls) costs (1%). The equipment operating cost consists

of repair parts (95%), lube (4%), and wear materials (drill bits and liners) (1%).

The variable costs in the cost model are reported in dollars per day. We calculate

the average tonnage processed per day at a mill from the Kiruna extraction file and

convert the variable costs to dollars per ton. The variable cost for each mill is listed

in Table 3.7.

Mill Variable Cost ($/ton)
BI $0
B2 $0.30
D3 $0.59

Table 3.7. Variable Cost for Ore Processing Mills ($/ton). The variable
costs of the B2 and D3 mills are a compilation of the costs associated with the
following processes: reagent use, magnetic separation, wet high intensity magnetic
separation, concentrate thickening and floatation, and pelletizing. Common variable
costs associated with processing (crushing and grinding) at all mills are considered
sunk costs; thus the variable cost at the B1 mill is $0.

The variable cost of ore misclassification is the difference between the variable

cost of the mill to which the ore was sent and the variable cost of the mill to which the

ore should have been sent, multiplied by the average tonnage of ore in a train load. In

the event that B2 or D3 are sent to the B1 mill, the difference between variable costs

would be negative. Since it isn't practical to assume that the mill incur a negative

cost, we consider the variable cost of the misclassification to be zero. The variable
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cost calculation is provided below.

f (vj - vy) • a, ord(i) < ord(j) and ord(j')=ord(i)
Variable Costsij = (3.6)

0, ord(i) _> ord(j)

V i E {B1, B2, D3}, j,j' E {B1M, B2M, D3M}

vj variable cost of ore processing at mill j

vj, variable cost of ore processing at mill j'

Table 3.8 details the variable costs for each of the nine mill and ore type combinations.

Mill Ore Type Avg. Train Difference in Total Variable
Load Variable Cost Cost

(vi - vS)
(tons/train) ($/ton) ($/train)

(1) (2) (3) (4) (5)
B1 Mill B1 Ore 455 $0 $0
B1 Mill B2 Ore 455 $0 $0
B1 Mill D3 Ore 455 $0 $0

B2 Mill BI Ore 455 $0.30 $137
B2 Mill B2 Ore 455 $0 $0
B2 Mill D3 Ore 455 $0 $0
D3 Mill B1 Ore 455 $0.59 $268
D3 Mill B2 Ore 455 $0.29 $132
D3 Mill D3 Ore 455 $0 $0

Table 3.8. Calculation of Variable Cost ($/train) The first column (1) is the
mill to which the ore is sent. Column two (2) is the ore type sent to the mill. Column
three (3) is the average tonnage in a train. Column four (4) is the variable cost
of misclassification in dollars per train load, as calculated with Equation 3.6. The
fifth column (5) is the total variable cost, which is the average tonnage per train (3)
multiplied by the variable cost of misclassification (4).
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Table 3.9 provides a summary of the costs when there is a misclassification of

ore, where the total cost is as calculated in Equation 3.3. We have converted the fixed

costs from dollars per day to dollars per train load by multiplying the fixed costs by

the reciprocal of the average number of trains per day (125).

In the above discussion we develop a methodology to quantify the cost of ore

misclassifications. The cost of ore misclassification is critical for evaluating the deci-

sion of whether to purchase technology that could be used to reduce misclassification

errors. We apply the misclassification costs in a value of information framework used

Mill Ore Type Profits Fixed Variable Total
Forgone Cost Cost Cost
($/train ($/train ($/train ($/train
load) load) load) load)

B1 Mill BI Ore $0 $0 $0 $0
B1 Mill B2 Ore $7,517 $6.67 $0 $7,524
BI Mill D3 Ore $6,479 $0 $0 $6,479

B2 Mill Bi Ore $1,920 $6.52 $137 $2,064
B2 Mill B2 Ore $0 $0 10 $0
B2 Mill D3 Ore $6,479 $0 $0 $6,479

D3 Mill BI Ore $1,920 $6.52 $268 $2,195
D3 Mill B2 Ore $7,517 $6.67 $132 $7,656
D3 Mill D3 Ore $0 $0 $0 $0

Table 3.9. Calculation of Total Cost of Mill Under-utilization ($/train load).
The total cost for each mill and ore combination is the sum of the profits forgone, the
fixed cost and the variable cost. The fixed cost has been converted from dollars per
day to dollars per train load by multiplying by the reciprocal of the average number
of train loads per day (125). The total cost has been rounded to the nearest dollar.

to help decision makers investigate the economic feasibility of acquiring additional

information on ore grade type.
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Chapter 4

VALUE OF INFORMATION

The previous chapter detailed how we determine the cost of the misclassification

errors inherent to Kiruna's current mining practice. Specifically, we determine the

cost of under-utilization of the mills due to misclassification. *This under-utilization

cost consists of three components: 1) profits forgone from misclassified ore, 2) the fixed

cost of mill under-utilization and 3) the variable cost of mill under-utilization. We use

these costs to assist us in determining the value of obtaining additional information

on extracted ore quality.

We use a value of information analysis to assess the value of a scanner technology.

This scanner would assay the ore before depositing it into an orepass as opposed to

waiting until the ore is dumped into the crusher. To determine the value of the

scanner we compare the expected value of the scanner to its purchase price and

maintenance costs. We report the cost of mill under-utilization in dollars per train

load for expositional purposes. The resulting expected value of the scanner is also in

dollars per train load. We then convert these results to dollars in order to compare

the expected benefits of reducing ore grade uncertainty to the cost of purchasing and

maintaining the scanner. Given the information from the analysis, decision makers

can determine whether or not the scanner is worth purchasing. If we show the scanner

saves the mine money by reducing misclassification errors and this savings is greater

than the purchase price and maintenance cost of the scanner, decision makers will be

motivated to purchase it.



46

4.1 Kiruna's Current Operation

Figure 4.1 depicts the current decisions and uncertainties mine operators face

when a train arrives at the crushers. A decision is made to dump the ore in a specific

crusher based on an assumption as to what ore type the train currently contains.

Mine operators form this assumption based on the last ore type observed from the

same shaft. If the last train load from that shaft contained Bi ore, the mine operators

assume that the current train load from that shaft also contains BI ore.

Before the ore is dumped into the crusher, there is uncertainty as to the actual

ore type, which is not resolved until the assay results are received. We represent the

mine operators' decision through the use of a decision tree, shown in Figure 4.1. In the

decision tree, the square represents a set of decision alternatives the mine operators

must make when a train arrives at the crushers. The mine operators decide to direct

the train to dump the ore in either the B1, B2, or D3 crusher. After this decision is

made, the circles represent the uncertainty as to the actual ore type contained in the

train. A load dumped into any crusher is realized as either B1, B2 or D3 ore. In this

representation of the mine operators' decision, we assume they have an expectation

that BI is contained in the current train load.

The probabilities on the uncertainty branches represent the proportion of time

that the actual ore type is B1, B2 or D3, given the mine operators expect the train

to contain BI ore. That is, given that the current train load is expected to carry B1,

84.9% of the time the train contains B1 ore, 11.1% of the time it contains B2 ore

and 4% of the time it contains D3 ore. We use the Kiruna extraction data coupled

with the identified ore misclassifications to calculate these probabilities (reference

Chapter 2). Since these probabilities are calculated from the database, which is a

sample of representative data, they are estimates of the actual probability of each
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event occurring. Each estimate has a certain amount of uncertainty surrounding it.

However, the sample sizes are very large for each calculated probability (the smallest

sample is approximately 18,000 data points); therefore, the variances around the

estimates are very small. From a statistical perspective, the uncertainty surrounding

each probability is negligible.

For each instance on the tree where the ore is deposited into the correct crusher,

the cost of misclassification is zero. If the ore is deposited into the incorrect crusher

(e.g., BI ore into the B2 or D3 crusher), the cost associated with this misclassifica-

tion follows Equation 3.3 (Section 3.2). For example, if B1 is dumped into the B2

crusher, the cost associated with this decision is the sum of the profits forgone of the

misclassified B1 ore plus the fixed cost of the under-utilization of the BI mill, and

the extra variable cost incurred because of processing the B1 ore as B2 oie. Using

the probability and costs of each outcome, an expected cost is calculated for each

decision, represented by the "Chance" value. For example, given the mine operator

choses to deposit the ore in the B2 crusher, the expected cost for this decision is

$2,011. The objective of the decision tree is to minimize cost, so the optimal choice is

to select the branch with the lowest "Chance" value. This choice is represented with

the "Decision" label.

Based on the above decision tree, the best alternative (indicated in Figure 4.1

with the "TRUE" label on the branch) is to deposit the assumed B1 ore load into

the B1 crusher, with an expected value of $1,094 per train load. This is the best

alternative because it is the decision branch with the lowest cost.

There is an opportunity for the mine to purchase technology that will provide

information that may reduce the uncertainty in the extracted ore grade. There are

two types of information that can be used to reduce the uncertainty inherent in the



48

51 Ore 84.9%

Suppose 81 ore is 11.1%
expected from the
current train load, 4.0%

$6,479

Base Case Decision $1,094
•1 K49%

/fl$2,064

Si 0 2 1 11,1

to~ ~ ~ ~ ~~~~~8 thCrushers TheS cot.neccrnc r h ot epreinTbe39

4.2~~~~B Pefctrermto

D3Oe 4,0%
$6ý479

S~$2,1 95
Legend FAS ic

Pf Oectienfort 11 .1%
O Ch#•;•N~d÷$7.656

TRUE 3 Ore 4.0%

FALSE Inc.! Iie sub-OPtIma are- v

Figure 4. 1. Base Case Decision Tree. This decision tree depicts the decisions and

uncertainties of the mine operators' current decision when a train brings a load of ore

to the crushers. The costs on each branch are the costs reported in Table 3.9.

decision making process - perfect and imperfect information. We investigate the

impact of both of these types of information on Kiruna's decision making process.

4.2 Perfect Information

Perfect information is information that is 100% correct, 100% of the time. Though

there is little chance of obtaining a source of perfect information, considering the pos-

sibility allows decision makers to examine how much better off they would be if they

made their decision after they knew what outcome would occur. Suppose the mine is
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offered a scanner that can predict with certainty which type of ore is delivered to the

crusher. Once the mine operators receive the information on the extracted ore type

from the perfect scanner, they decide to which crusher to send the train. Figure 4.2

illustrates the case of perfect information.

In the decision tree in Figure 4.2, there are four decisions the mine operators

can make. The first three branches emanating from the decision node represent the

base case scenario. The fourth branch represents the alternative to acquire perfect

information. Mine operators make a decision on whether to direct the ore to a certain

crusher based on their expectation of the ore type contained in the train or to obtain

perfect information on the contents of the train load. Before the perfect information

source is used, there is an 85% chance it predicts BI ore, an 11% chance it predicts

B2 ore, and a 4% chance it predicts D3 ore. These percentages are the conditional

probabilities of the occurrence of the three ore types given the expectation that the

ore type is B1. Since these probabilities were not known at the time of extraction, we

assume they are the same as the probability of the realization of the three ore types

when a suspected load of B1 ore arrives at the crushers, as calculated for the base

case scenario. Once the mine operators receive the scanner results, the ore type is

known and there is no uncertainty associated with the decision as to which crusher

to send the ore.

The expected value of perfect information (EVPI) is the difference between the

expected value of the best alternative without information and the expected value of

the information alternative. The expected value of the information is $0 per train

load (because that is the alternative with the lowest cost, as shown in Figure 4.2),

thus making the EVPI equal to $1,094 per train load.
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If the mine managers are offered a perfect scanner, they should pay no more than

the equivalent of $1,094 per train load for it. However; scanner technology is not a

source of perfect information. A scanner that is not accurate 100% of the time is a

source of imperfect information.

The following section discusses an available scanning system and the expected

value this imperfect information source provides to the mine.

4.3 Laser-Induced Fluorescence (LIF) Analyzer

The use of laser-induced fluorescence (LIF) in the mineral industry is a recent

development. AIS Sommer GmbH of Germany introduced the first LIF analyzer to

the mining sector in April 1998 (Broicher, 2000). LIF technology takes advantage

of photoluminescence, a physical property of minerals. Photoluminescence is when

matter emits visible radiation after it has been irradiated with light. In the case of

LIF technology, the light source is a laser. The wavelengths of the visible radiation

emitted are unique to trace elements that are present in the mineral being scanned.

4.3.1 Advantages and Disadvantages of LIF Technology

One of the major disadvantages of LIF analysis is that it is limited to sampling

only the surface of a load of ore. Users assume that the surface scan is representative

of the entire load; that is, that the load is homogeneous throughout. Another disad-

vantage to LIF technology is the difficulty in determining elemental composition of

heterogeneous rock. The many different trace elements tend to blend together in a

cumulative emission spectrum, thus making it nearly impossible to identify individual

elements present in the mineral (Broicher, 2000).

Despite these drawbacks, there are also many advantages to using LIF technology
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for mineral analysis. LIF can be utilized on most minerals and rocks. The irradiation

of the mineral takes only a few nanoseconds; thus the total sampling of a mineral will

take less than 10 nanoseconds. As many as 500 samples per second can be realized.

The speed in acquiring results is limited by the sample evaluation software. LIF is

an optical sampling technology. This is an advantage because there is no need to

gather samples and destroy material to realize elemental composition. Additionally,

LIF analysis can be utilized over varying distances, resulting in more flexibility in its

use (Broicher, 2000).

4.3.2 LIF Analyzers at Kiruna

The first use of LIF technology in the mineral industry was the result of a joint

effort between LKAB and AIS Sommer GmbH. There have been a number of tests

utilizing the LIF scanner conducted at Kiruna. The mine has tested the LIF analyzer

in the production area, above a conveyor in one of the ore processing mills, and in

the main haulage level. The first test of the LIF technology at Kiruna was conducted

from March - May 1998. The LIF unit was suspended in one of the sublevels in

the production area (see Figure 2.1). The Load-Haul-Dump units (LHDs) drove

under the LIF which scanned the bucket load of ore. An engineer also took physical

samples of the ore in order to check the accuracy of the unit. This unit was returned

to the manufacturer after the test period to improve its durability for the rough

mining environment. In February 1999, a second LIF test unit was installed in the

processing plant over the belt conveyor. After two months of continuous operation,

the unit failed and was returned to the manufacturer for further improvements.

In 2000, a new company was formed which specialized in applying LIF technology

to the mining sector. Their first LIF analyzer was delivered to Kiruna in May 2001
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and was tested both above a conveyor belt and in the production area. In August

2001 it was returned to the manufacturer for further improvements. The analyzer

was returned to Kiruna in November 2001 where it was tested in the main haulage

level. The analyzer was suspended above the train tracks and scanned the ore as the

trains passed underneath on the way to the crushers. With these sample results mine

operators could redirect the train to the appropriate crusher if necessary. This unit

was returned to the manufacturer for final test work. A LIF scanner was re-installed

in the main haulage level in December 2003 and was discontinued approximately 7-8

months later due to technical difficulties.

4.3.3 Positioning the LIF Analyzer

There are advantages associated with locating the LIF scanner on the main

haulage level. First, one scanner can be used to analyze all ore collected from the mine,

regardless of the production area from which it was extracted. Second, installation

of the LIF scanner on the main haulage level provides mine operators with some

advance notice as to the content of the train load before it arrives at the crusher.

The scan provides the mine operators with an estimate of the phosphorus level in the

train, thus allowing them to redirect the train to the appropriate crusher based on

the information provided from this scan. However, there are also disadvantages to

having the LIF analyzer installed on the main haulage level.

The first major disadvantage is the quantity of ore being scanned. A train

typically carries about 450 to 500 tons of ore. The scanner only has the ability to

scan the surface of the ore in the train, leaving a large margin for error if there

is variation in the phosphorus content in each train car. If the LIF analyzer were

installed in the production area, it would only scan an LHD bucket load, which holds
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approximately 25 tons of ore. While there is still a portion of ore in the bucket'

load that cannot be analyzed, there is a greater chance that the bucket load is more

homogeneous than a train load of ore carrying 500 tons.

Another disadvantage of positioning the scanner on the main haulage level is the

timing of the analysis. Even though mine operators can redirect the trains to the

appropriate crusher based on the LIF scans, there is still the possibility of incorrectly

dumping ore into the orepasses in the production area. Installing the scanner in the

production area will allow earlier scanning of the collected ore, leading to a smaller

probability of incorrectly dumping ore into the orepasses, thus leading to a higher

probability of collecting the ore needed to meet production targets.

4.4 Imperfect Information

Information sources are usually subject to errors; therefore, the information they

provide is not perfect. For example, though the scanner indicates the LHD bucket

contains BI ore, there is some probability that the reading is wrong and the ore is

actually B2 or D3. The accuracy of the scanner influences the value of the scanner

to the mine, which influences the purchasing decision.

The accuracy of the scanner is represented by the conditional probabilities at

the end of each branch indicating the realized ore type after the ore has been sent to

a crusher (see [1] on Figure 4.3). These conditional probabilities are interpreted as

the probability the ore type is B1, B2 or D3 given the scanner predicts it is B1, B2 or

D3. Since we were unable to obtain actual scanner accuracies for the given scenarios,

we have chosen some representative scanner accuracies given our discussions with one

of the initial developers of the scanner, Herb Broicher, and the head of the LKAB

LIF research group, Niklas Johansson. For example, the probability the ore type
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deposited into the BI crusher is BI given the scanner predicted it would be BI is

90%; as shown below.

P(B1 ore scanner predicts B1 ore) = 90%

We use the following methodology to compute the probability that the ore is B2

given the scanner predicted B1 and the probability the ore is D3 given the scanner

predicted B1. We have assumed that in the event that the scanner predicts the ore

load contains B1, the ore type is actually BI 90% of the time. We then proportion the

remaining 10% probability between the realizations of B2 ore and D3 ore given the

scanner predicts B1 (see [1] on Figure 4.3). We would expect the realization of B2 to

be higher than the realization of D3, so we put an initial guess for the probability of

B2 or D3 ore given the scanner predicted B1. We then take the ratio of the probability

on the B2 branch to the sum of the probabilities on the B2 and D3 branches, which is

0.667. We then establish the relationship between the B2 and B1 branch as follows:

P(B2 ore scanner predicts B1) = (1 - P(B1 ore I scanner predicts B1)) • 0.667

The calculation for the realization of D3 ore given the scanner predicts B1 is:

P(D3 ore I predict B1) = 1 - P(B1 ore I predict B1) - P(B2 ore predict B1)

A similar methodology is used to construct the remaining conditional probabil-

ities given the scanner predicted either B2 or D3 ore. The conditional probabilities

for each branch are listed in Table 4.1.
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Scanner Ore Type Conditional
Prediction Realization Probability
(1) (2) (3)
BI Ore BI Ore .90
BI Ore B2 Ore .067
BI Ore D3 Ore .033

B2 Ore BI Ore .075
B2 Ore B2 Ore .90
B2 Ore D3 Ore .025
D3 Ore B1 Ore .02
D3 Ore B2 Ore .08
D3 Ore D3 Ore .90

Table 4.1. Conditional Probabilities of Scanner Predictions. Column one (1)
is the ore type the scanner predicts. Column two (2) is the actual ore type of the
load. Column three (3) is the conditional probability that the ore type is (2) given
the scanner predicted (1). That is, (3) = P[(2) I (1)].

For readability we display a partial representation of the imperfect information

tree in Figure 4.3. A full representation can be seen in Appendix C. The top branch

represents the best alternative without information from the base case. The bottom

branch is the alternative of using a scanner to predict the ore type in the current

train load. The LIF analyzer scans the ore and there is a chance it predicts B1, B2

or D3 ore. After this prediction is made, the mine operators decide to which crusher

to send the ore. We only show the decision alternatives given the scanner predicts

the train load contains B1 ore. The other two branches (that the scanner predicts B2

or D3 ore) are collapsed and the expected cost of each decision is labeled beside the

collapsed branch.
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Figure 4.3. Base Case vs. Imperfect Information. In this decision tree the mine
operators can make a decision to use a source of imperfect information, that is an
information source that is subject to errors.
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Taking the product of 1) the probability of the scanner predicting each ore type

and 2) the associated value of that decision, the expected value of the scanner infor-

mation is $671 per train load. Taking the difference between the expected value of the

best alternative without information ($1094) and the expected value of the scanner

($671), we calculate the expected value of imperfect information (EVII) as $423 per

train load. That is, if the mine's decision makers can obtain the scanner for less than

the equivalent of $423 per train load, the scanner presents some value to them.

Since we constructed these probabilities based on personal communication, we

conduct a sensitivity analysis of the accuracy of the scanner for each ore type. This

sensitivity analysis provides mine operators with a range of scanner accuracies over

which it is beneficial to purchase the scanner.

4.5 Sensitivity Analysis

The B1 ore is the most susceptible to misclassification errors and, consequently,

the most likely to show deviation from its production target. Therefore, we complete

a sensitivity analysis of the reliability of the scanner in predicting B1 ore. The

sensitivity analysis indicates the lowest reliability (accuracy) of the scanner that is

still beneficial to the mine. Once the expected value of the imperfect information

reaches $0 per train load, the information from the scanner offers no benefit beyond

the original decision the mine operators make. While conducting this sensitivity

analysis, the reliability of the scanner predicting B2 or D3 ore is held constant at

90%.

We use the PrecisionTree software sensitivity analysis toolkit to perform the

analysis. We vary the reliability of the scanner between 50% and 100% and look for

the point where the EVII first hits $0. Figure 4.4 details the results of this sensitivity
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analysis.

E VIl vs; Scanner Accuracy in Predicting B1 Ore
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Figure 4.4. Relationship between the Reliability of the Scanner and the
Expected Value of the Imperfect Information Source. This graph details the
effect of changing scanner accuracy on the expected value of the imperfect information
source. At 83% accuracy, the EVII is $0, meaning the scanner is no longer accurate
enough to benefit the mine in reducing ore misclassifications.

We see in Figure 4.4 that once the scanner reaches 83% accuracy, the EVII is

$0. When the expected value of imperfect information is zero, the expected value of

the cost of the information is the same 'as the expected value of the cost of the best

alternative without information; therefore, it is best for the mine not to purchase the

scanner and continue with its current policies.

4.6 Results

The results of the sensitivity analysis, coupled with the initial evaluation of a

LIE analyzer that provides imperfect information to the mine if it is purchased and
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installed in the production area, allows us to determine if buying this scanner is

worthwhile to the mine by comparing the expected value of purchasing the scanner

(expected value of imperfect information) to the costs of the scanner. If the cost of

the scanner is greater than the expected value gained from its use, the mine should

not buy the scanner. If the expected value of the scanner is greater than the costs,

the mine should purchase it. The purchase cost of a scanner for the Kiruna mine is

approximately $355,222 and the annual maintenance of a scanner is usually estimated

at 10% of the cost, or $35,522 (Broicher, 2005).

Our recommendation is that a LIF analyzer be installed in each of the 10 pro-

duction areas in the mine (reference Figure 2.3, Section 2.4). We calculate the present

value of the cost of the scanner over a three year period assuming a discount rate of

10%, which results in a cost of $452,394 per scanner. The purchase of 10 scanners

results in the total cost over the three year period to be $4.5M. Similarly, we can

calculate the present value of the benefit of the EVIL.

We calculated the expected value of the imperfect information alternative as

$423 per train load (see Section 4.4). We convert the EVIl from dollars per train load

to dollars per year by multiplying the EVIl times 125 trains per day and then by 365

days per year. This results in a benefit of $19.3M per year. We perform the present

value calculation over the three year period with a discount rate of 10%, which results

in a total benefit of $52.9M over the three year horizon. Since the expected benefit

is much higher than the expected cost ($4.5M), we conclude there is positive value

associated with the decision to purchase a scanner for each production area, given

the assumption of the accuracy of the scanner.

In Section 4.5 we established the scanner information was of positive value (pos-

itive EVII) to the mine when the scanner was between 84% and 100% accurate in
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Figure 4.5. Effect of Scanner Accuracy on Net Benefit. Using the range of
scanner accuracies where the scanner has positive value to the mine, we establish a
relationship between the accuracy of the scanner in predicting BI ore and the total net
benefit to the mine. The net benefit is the difference between the expected value of
imperfect information and the purchase cost and yearly maintenance of the scanner.

predicting B1 ore. We can calculate the net benefit of the scanner to the mine over

a three year horizon for each of these values. Figure 4.5 represents the relationship

between the scanner accuracy and the net benefit of the scanner to the mine over this

range.

Given our assumptions about the accuracy of the scanner, we show that there is

positive benefit to the value of acquiring additional information regarding the phos-

phorus content in the extracted ore. This additional information helps eliminate some

of the uncertainty surrounding which ore type, is in the current train load. Since we

do not have exact numbers for the accuracy of the scanner, we report a bound on the

reliability of the scanner, below which the value of obtaining additional information is

zero. Comparing the benefit of the scanner to the purchasing and maintenance costs

over a three year period, at a 10% discount rate, we can inform mine decision makers

that there is positive value associated with the purchase of the scanners. Specifically,
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referencing Figure 4.5, the positive value of the scanners range anywhere from $2.7M

per year to $116M per year, depending on the accuracy of the scanner.
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Chapter 5

RESULTS AND CONCLUSIONS

In our research we have studied the effect of dilution on extracted ore grade

quality at LKAB's Kiruna iron ore mine located in northern Sweden. Specifically,

we have investigated the implication of misclassification of ore and presented a value

of information framework to analyze the possibility of the Kiruna mine purchasing

scanner technology. This technology would provide information on the phosphorus

level of the extracted ore, thus reducing the occurrence of ore misclassifications.

We developed a methodology that allowed us to identify misclassification errors

in the extraction data file. Kiruna provided us with this data file which chronicles

all ore extractions from September 2001 to June 2004. We associated a cost with the

misclassification errors in terms of the under-utilization of the ore processing mills.

This cost consisted of profits forgone from misclassified ore, and fixed and variable

costs associated with the under-utilization of the mills. We used a decision tree to

model the Kiruna mine operator's current decision as to which crusher to direct a train

load of ore and to model uncertainty of the ore type deposited into the crusher. We

then analyzed the possibility of utilizing a LIF (laser-induced fluorescence) scanner

to reduce the uncertainty in the extracted ore type. In the remainder of this chapter

we summarize the results of this analysis and the implications, limitations, strengths,

and possible extensions of our research.
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5.1 Results

In Chapter 4 we found that, given our assumptions about the Kiruna decision-

making process, there is positive value associated with the purchase of an LIF scanner.

In our analysis, we specifically looked at the accuracy of the scanner in predicting the

BI ore type. Our initial investigation of the expected value of the scanner indicates

that if we assume the probability the ore type is B1 given the scanner predicts BI ore

is 90%, there is benefit gained from purchasing the LIF scanner. The expected value

of the imperfect information source (the scanner), or EVII, is $423 per train load.

We conducted a sensitivity analysis on the accuracy of the probability the ore

type is B 1 given the scanner predicted it would be B 1. We found that if the probability

the ore type is BI given the scanner predicts B1 ore is greater than or equal to 84%,

then the EVII is positive. If the scanner accuracy is less than 84%, the information

from the scanner would no longer be valuable to the mine (EVII < $0).

Once we calculated the expected value of the scanner and established a range in

which the reliability of the scanner presents positive value, we compared the benefit

received from the scanner to the costs of purchasing and maintaining 10 scanners, one

in each production area. We compared the expected benefits and costs of the scanner

over a three year period using a discount rate of 10%. The net benefit of the scanner

to the mine ranges from $2.7M (84% accurate) to $116M (99% accuracte).

5.2 Conclusions

There are a number of conclusions that can be drawn from this research. We

start with a discussion of the implications of this research, then address the limitations

and strengths of our methodology. Finally, we conclude with some future research

and proposed extensions.
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5.2.1 Implications

We have developed a methodology that allows the Kiruna mine to scientifically

analyze the choice of purchasing a technology that would gather additional informa-

tion on the phosphorus level in its extracted ore. We present the mine managers

with the results that inform them of their expected benefits given the opportunity

to purchase a scanner within a certain reliability range. Given this information they

can determine whether or not this reduction in uncertainty is economically beneficial

to them.

This research is the first implementation• of a value of information framework

applied to the mining sector. Our methodology presents the mining sector with a

methodology that considers uncertainty in decision making. It provides a suggested

method to quantify and qualify uncertainty and determine if gathering additional

information to reduce that uncertainty will be of economic benefit to a mine.

5.2.2 Limitations

One limitation with our chosen modeling and analysis method is that it is a static

analysis. We consider the instant immediately before a train arrives at the crusher.

The only decision the mine operators must make is to which crusher to direct the

ore based on their assumption of the ore type in the train. In reality, there are a

number of other factors that also influence the mine operators' decisions. One such

factor is the current level of production for each of the ore types. The relative levels

of production between ore types can influence the mine operators' decision regarding

to which crusher to send the ore. If the mine operators suspect they will easily

make their monthly production target for B1, they may start to direct some of the

B1 ore loads to the B2 and D3 crushers in order to assist in meeting the monthly
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production targets for those ore types. This decision is contingent on keeping the

average phosphorus levels in each ore type within desired limits.

Mine operators also redirect ore to a crusher for reasons not captured in the

misclassification methodology we developed. We have identified three causes for mis-

classification. There are other instances of misclassification that we may not have

captured because these decisions are not readily reflected in the ore extraction data

set. For example, equipment failures upstream (ore lifts to the surface, train transport

on the surface, etc.) can cause mine operators to redirect the ore. The ore extraction

data set only records data about the ore dumped into the crusher; any operations

upstream are not captured in the file. To the best of our knowledge we have detected

all misclassification errors that we could with the extraction data file.

Another factor we do not consider is the movement of ore from the mine to the

mills. We have assumed that there is a one-to-one correspondence between dumping

the ore into the crusher and the mill to which the ore is sent. This is not necessarily

the case. There are very costly methods that allow mine operators to redirect some

of the ore if it is found to be misclassified. However, the complicated logistics and

high costs make redirecting ore highly undesirable. While we realize this movement

happens we are unable to capture it with the data available to us. In order to capture

ore redirection between mills we would need variables detailing upstream operations

such as the lift on which the ore was placed and which mill that lift services.

We also made a number of estimates in our research. Because of aggregate cost

data in the Kiruna cost model provided by the World Mine Cost Data Exchange, we

had to estimate the fixed cost of ore misclassification for the BI and D3 mills. The

utilization of each of the mills is an estimate based on our calculations of estimated

and actual production of each ore type using the extraction data base. Finally, we
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used discussions with LIF experts to estimate the accuracy of the LIF scanners for

our analysis on the value of the scanner information alternative to the Kiruna mine.

We have made a number of assumptions and estimates that have varying effects

on our conclusions gathered from the analysis. One assumption is the only cost in-

curred from ore misclassification is the under-utilization of the ore processing mills.

We do not consider other costs such as loss of customer goodwill and ships sitting idle

in the harbors. Considering only the under-utilization of the mills presents a lower

bound on the cost of ore misclassification. Therefore, our analysis conclusions repre-

sent a lower bound on the net benefit of the scanner technology. Quantifying other

costs associated with ore misclassification will make the conclusions and recommen-

dations of our analysis stronger. We also made s6me assumptions on the accuracy

of the scanner when conducting the sensitivity analysis. We assumed the accuracy

of the scanner predicting B2 and D3 ore types were not affected by changing the

accuracy of the scanner in predicting B1 ore. If these assumptions are incorrect, we

are unsure of the effects on our conclusions.

Though there are limitations to our modeling method and our evaluation method-

ology, there are also strengths associated with our modeling technique.

5.2.3 Strengths

One strength of our method of evaluation is its ease of implementation. We

mentioned a number of estimates that were made because of lack of complete data.

If, in the future, were we presented with actual costs and more precise reliabilities for

the scanner, we can easily incorporate these changes into the decision tree by simply

changing the costs or probabilities that should be changed. The decision tree then

re-computes the expected value of the scanner information and a new expected value
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of imperfect information (EVII) can be computed.

Another strength with modeling Kiruna's decision using a decision tree is we

can run a number of different scenarios if input factors change, or if mine decision

makers would like to consider another configuration. For example, the mine plans

on changing production to two ore types (B2 and D3) within the next decade. The

decision tree could be reconfigured to take this into account by deleting the decision

alternative of dumping into the B1 crusher and the outcomes of realizing the BI

ore type. This would allow mine decision makers to resolve some future uncertainty

associated with the change in mining practice.

5.2.4 Extensions and Future Research

The methodology developed in this research is not limited to implementation at

the Kiruna mine. It can be extended to any mine that encounters uncertainty sur-

rounding its extracted mineral type or quality, even to mines with only one product.

The misclassification methodology can be modified to capture instances in which mis-

classification of any mineral occurs. This misclassification could be that the mineral

is not the expected type (as with the Kiruna mine) or it is not the quality expected

(it is more diluted than expected).

In addition to this methodology being used in other mining operations with di-

lution problems, it can also be extended to other mining situations where uncertainty

in a concern. For example, equipment failures can severely affect meeting produc-

tion goals. A value of information methodology could be used to investigate different

maintenance strategies for critical mining equipment. A mining company could also

evaluate the possibility of purchasing new technology that would more accurately de-

termine the quality of the mineral in-situ, thus resulting in a more precise prediction



69

of extracted mineral quantity and quality.

There are a number of future directions for this research. One direction is to

incorporate actual scanner accuracies into the decision tree and rerun the above anal-

ysis. This step might involve a joint effort with the developer of the scanner and

some laboratory experiments to get a range of reliabilities of the scanner for the three

different ore types.

Another direction is to model the mine's decisions and uncertainties when mining

two products (B2 and D3). It may be more valuable to revisit this configuration

once Kiruna has switched to two products and extraction records can be obtained

representing this change. The incidence of misclassification when there are only two

products may not be the same as when there are three. This change would also need

to incorporate the capacity of the new mill LKAB is building on-site at the Kiruna

mine and the ore type it will process.

Our results suggest that there is benefit if Kiruna purchases 10 scanners, one

for each production area. This assumes that the incidence of misclassification is

the same for each production area. It could be that some areas of the mine are

more homogenous in their ore type than others, thus resulting in less incidence of

misclassification. Perhaps for these areas, there is no benefit to installing a scanner.

Future research could test if variability in ore type at each production area influences

the scanner purchasing decision.
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APPENDIX A

COMPARE ACTUAL AND ESTIMATED PRODUCTION FOR B2

AND D3
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Figure A.1. Comparison of B2 Actual Ore Production and B2 Estimated Ore Pro-
"duction
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D3 Ore Type: Actual vs. Estirnated Production
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Figure A.2. Comparison of D3 Actual Ore Production and D3 Estimated Ore Pro-
duction
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APPENDIX B

COMPLETE LIST OF KIRUNA VARIABLES
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Variable Name Label (Description)
LoadNum Load Number
Time Time (24Hr Clock)
Date Date
TrainNum Train Number
EngNum Engine Number
NumCars Number of Train Cars
PIND Error Indicator
VIKTIND Error Indicator
PctWaste Percent Waste Rock in Ore Load
PctK20 Percent Potassium Oxide in Ore Load
PctFE Percent Iron in Ore Load
PctP Percent Phosphorus in Ore Load
PctMGO Percent Magnesium Oxide in Ore Load
PctALO Percent Aluminum Oxide in Ore Load
PctSIO2 Percent Silicon Dioxide in Ore Load
PctCAO Percent Calcium Oxide in Ore Load
PctTI Percent Titanium in Ore Load
Weight Weight of Ore Load
Shift Shift (FM - day; EM - swing; NAT night)
CrushPckt Crusher Pocket Number
CrushNum Crusher Number (4 crushers, 3 active at once)
CrushOre Crusher Ore Quality (Crusher set to process B1, B2, or D3)
ShaftNum Shaft Number
ShaftOre Shaft Ore Quality (Shaft set to hold B1, B2, or D3)
ProdGrpNum Production Group Number
Status Status
TransLvl Transportation Level (1045 m)

Table B.1. Complete List of Variables from Kiruna Ore Extraction Data File
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APPENDIX C

BASE CASE VS. IMPERFECT INFORMATION



81

0 11.114

10

0 1710

1226

40

$273

17.5

Fiue6.L0ae7ae s Imprfecrtr Irfosrmation10


